کاربرد قواعد کشفی و الگوریتم ژنتیک در ساخت مدل arma برای پیش بینی سری زمانی
Authors
abstract
برای پیشبینی سری زمانی ابتدا باید مدل مناسبی از آن ساخته شود. تعیین ابعاد و تخمین پارامترهای مناسب برای مدل arma سری زمانی، چالشی است که علاوه بر روشهای متداول آماری، از طریق محاسبات هوشمند نیز به آن توجه شده است. در این مقاله استفاده از الگوریتم ژنتیک برای تخمین پارامترهای مدل arma و قواعد کشفی برای تعیین ابعاد مدل ارائه میشود. قواعد کشفی بر اساس ویژگیهای سری زمانی استخراج میشوند. دادهها به روش پنجرۀ لغزان در پیشبینی بهکار میروند. مدل بر اساس معیار اطلاعاتی بیزین و پیشبینی بر اساس دو معیار مجذور متوسط مربعات خطا و متوسط قدر مطلق درصد خطا ارزیابی میشود. روش ارائهشده روی هشت سری زمانی با ویژگیهای مختلف بهکار رفته و نتایج آن با نتایج روش آماری مقایسه شده است. نتایج نشان میدهد در تمام موارد، روش ارائهشده همسان یا بهتر از روش کلاسیک عمل میکند.
similar resources
کاربرد قواعد کشفی و الگوریتم ژنتیک در ساخت مدل ARMA برای پیش بینی سری زمانی
برای پیشبینی سری زمانی ابتدا باید مدل مناسبی از آن ساخته شود. تعیین ابعاد و تخمین پارامترهای مناسب برای مدل ARMA سری زمانی، چالشی است که علاوه بر روشهای متداول آماری، از طریق محاسبات هوشمند نیز به آن توجه شده است. در این مقاله استفاده از الگوریتم ژنتیک برای تخمین پارامترهای مدل ARMA و قواعد کشفی برای تعیین ابعاد مدل ارائه میشود. قواعد کشفی براساس ویژگیهای سری زمانی استخراج میشوند. داده...
full textکاربرد مدل شبکه عصبی- موجک برای پیش بینی ویژگی های غیرایستا و غیرخطی سری زمانی تراز آب زیرزمینی
سفره های آب زیرزمینی غالباً به عنوان سیستم هایی با ویژگی های غیرایستا و غیرخطی شناخته می شوند. مدل سازی این سیستم ها و پیش بینی حالت های آینده آن ها نیازمند تشخیص این ویژگی های بنیادی است. اخیراً، آنالیز موجک به دلیل توانایی آن در رمزگشایی ویژگی های اشاره شده، به طور گسترده ای در زمینه پیش بینی سری های زمانی هیدرولوژیکی مورد استفاده قرار گرفته است. در این مقاله توانایی مدل ترکیبی ...
full textتحلیل تقاضای مسافر ریلی و پیش بینی آن با الگوریتم سری زمانی
با توجه به اهمیت مدیریت عرضه امکاناتحمل و نقل در وضع موجود و تخصیص این منابع در بخش حمل و نقل ریلی، پیشبینی تعداد مسافرین از اولویت بالایی برخوردار است. در این تحقیق با استفاده از مدلهای سری زمانی، تقاضای مسافرت در شبکه راهآهن جمهوری اسلامی ایران پیشبینی شده است. سریهای زمانی ایستا و ناایستای تقاضای مسافر ریلی با آزمایش وجود ریشه واحد و ریشه واحد فصلی قبل از مراحل تخمین، انتخاب مدل و پیشب...
full textپیش بینی شاخص بازار بورس تهران با استفاده از مدل سری زمانی فازی مرتبه بالا و الگوریتم شبیه سازی تبرید
During the recent years extensive researchs have been done on fuzzy time series. Since length of intervals affect the forecasting results in these models, doing research in this area became an interesting topic for time series researchers, there are some studies on this issue but their results are not good enough. In this study, we propose a novel simulated annealing heuristic algorithm is use...
full textکاربردهای شبکه های عصبی در پیش بینی سری های زمانی
استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...
full textکاربرد روش تحلیل سری زمانی در پیش بینی تکامل شورابه در دریاچه ارومیه
بررسی هیدروشیمی آب دریاچه ارومیه از سال 2007 تا 2015 با آنالیز180 نمونه آب انجام گرفت. این تحقیق قصد دارد با توجه به تغییرات میزان آنیون ها و کاتیون های اصلی در شورابه دریاچه ارومیه طی این دوره 9 ساله، با استفاده از روش آماری ARIMA به پیش بینی مقدار یون های موجود در دریاچه ارومیه برای شش سال آینده بپردازد. مهم ترین هدف از تجزیه و تحلیل سری های زمانی یافتن روند تغییرات و پیش بینی آینده بر مبنای ...
full textMy Resources
Save resource for easier access later
Journal title:
فصلنامه علمی-پژوهشی مدیریت فناوری اطلاعاتPublisher: دانشکده مدیریت دانشگاه تهران
ISSN 2008-5893
volume 8
issue 1 2016
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023